Rubber tree ecophysiology and Climate Change What do we know? Philippe Thaler, Eric Gohet , Yann Nouvellon, Régis Lacote, Frédéric Gay and Frédéric Do ## Rubber ecophysiology and future climate What will the climate be in the main rubber producing areas? What will be the effects of higher T° on C assimilation? What will be the effects of higher T° on tree growth? What will be the effects of higher T° on latex production? Adaptation of rubber trees to water stress? almost nothing #### What will the climate be in the main rubber producing areas? #### Probable Global Climate scenarios are rather well-known - But need to be downscalled to every local NR area - Methodologies are available - Good forecasts in some areas - Need to be generalized or updated Zomer et al. 2014 https://doi.org/10.1016/j.biocon.2013.11.028 • Some knowledge at leaf scale (Kositsup et al 2010) Trees (2009) 23:357-365 DOI 10.1007/s00468-008-0284-x #### ORIGINAL PAPER INRAO Photosynthetic capacity and temperature responses of photosynthesis of rubber trees (*Hevea brasiliensis* Müll. Arg.) acclimate to changes in ambient temperatures Boonthida Kositsup · Pierre Montpied · Poonpipope Kasemsap · Philippe Thaler Thierry Améglio · Erwin Dreyer | Parameter | Growth temperature (°C) | | |--|-------------------------|----------------------| | | 18 | 28 | | V _{cmax25} (μmol m ⁻² s ⁻¹) | 26.1 ± 1.8^{a} | 43.9 ± 2.9^{b} | | $E_{\rm aV} ({\rm kJ \ mol}^{-1})$ | 60.8 ± 7.2^{a} | 68.5 ± 6.2^{b} | | $J_{\text{max}25} \text{ (umol m}^{-2} \text{ s}^{-1}\text{)}$ | 50.8 ± 9.9^{a} | 77.4 ± 11.2^{b} | | $E_{\rm aJ}$ (kJ mol ⁻¹) | 39.2 ± 18.5^{a} | 50.6 ± 13.5^{b} | | $J_{\text{max25}}/V_{\text{cmax25}}$ | 1.93 ± 0.005^{a} | 1.79 ± 0.004^{b} | | LMA (g m ⁻²) | 64.1 ± 1.4^{a} | 52.1 ± 1.3^{b} | | SPAD | 41.6 ± 0.9^{a} | 55.6 ± 0.9^{b} | | N_m (%) | 2.72 ± 0.05^{a} | 4.08 ± 0.05^{b} | | C (%) | 47.4 ± 0.2^{a} | 48.2 ± 0.2^{b} | | $V_{\text{cmax25}}/N_{\text{a}} \; (\mu \text{mol g}^{-1} \; \text{s}^{-1})$ | 14.8 ± 0.3^{a} | 21.2 ± 0.3^{b} | | $J_{\text{max}25}/N_{\text{a}} \; (\mu \text{mol g}^{-1} \; \text{s}^{-1})$ | 28.9 ± 0.9^{a} | 37.0 ± 0.8^{b} | We can predict photosynthetic parameters at future temperatures But a long way to predict whole tree C assimilation and plantation primary production (GPP)! PS parameters x stomatal conductance x whole tree canopy x phenology.... # The way forward: upscalling flux measurements Rubber Flux Tower at Chachoengsao http://asiaflux.net **Primary Production** **Evapo-** transpiration Water Use Efficiency #### The way forward: modelling Simulation of water and CO₂ fluxes at tree and plot scale #### The way forward: modelling Forest Ecology and Management 439 (2019) 55-69 Climbing the mountain fast but smart: Modelling rubber tree growth and latex yield under climate change Xueqing Yang^{a,b,c}, Sergey Blagodatsky^{a,*}, Carsten Marohn^a, Hongxi Liu^a, Reza Golbon^a, Jianchu Xu^c, Georg Cadisch^a - ^a Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Sautgart, Germany - b Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunning, China - World Agroforestry Centre (ICRAF), China & East Asia Office c.o. Kunming Institute of Botany, Kunming, China Presented by S Blagodatsky in Session 2 #### **Example LUCIA Model** #### What about growth and latex production? # Biomass will be directly linked to C assimilation but growth /yield partitioning depends on C allocation Journal of Experimental Botany, Vol. 71, No. 6 pp. 2028–2039, 2020 doi:10.1093/jxb/erz551 RESEARCH PAPER In situ (13CO₂) labelling of rubber trees reveals a seasonal shift in the contribution of the carbon sources involved in latex regeneration Ornuma Duangngam^{1,2}, Dorine Desalme^{3,8,0}, Philippe Thaler^{4,5}, Poonpipope Kasemsap^{2,*}, Jate Sathornkich², Duangrat Satakhun¹, Chompunut Chayawat¹, Nicolas Angeli³, Pisamai Chantuma⁶ and Daniel Epron^{3,7} Direct effects of higher T° on latex yield? - Negative for latex flow? - Day/night differences? Greater diurnal temperature difference, an overlooked but important climatic driver of rubber yield Yu Haiying et al. 2014. INDUSTRIAL CROPS AND PRODUCTS 62: 14-21 A key research topic will be the interactions between climate change and low tapping frequencies Socio-economic x climate issue. #### Adaptation of rubber trees to water stress? - More knowledge from the numerous studies of adaptation to drier conditions in marginal areas, particularly in India and NE Thailand - Recent findings show a promising clonal variability in response to water stress "Growth and Hydraulic" (GRHYD) project: Bases of rubber clones adaptation to water constraints in immature period Index of investment in canopy in rainy season #### Adaptation of rubber trees to water stress? - Important to untangle soil drought from atmospheric drought - Strong regulation of transpiration with highVPD, even if water is available in soil. Strong over-estimation of water use in many studies and models. From Isarangkool et al 2011 (mature trees RRIM600) Relationship between tree transpiration and reference evapotranspiration (ET0) in a well-watered period (REW > 0.5) with ET0 \leq 2.2 mm day-1 (open circle), a well-watered period when ET0 was higher than >2.2 mm day-1 (closed circle), others drought periods (REW < 0.5). ## Conclusion - Little knowledge and huge gaps - Potential risk of adverse effects of CC on growth, survival and yield - Intensive research efforts to be promoted Improving the ecophysiological functions in integrative models could be a relevant cooperative project for the network.