

Rubber tree ecophysiology and Climate Change

What do we know?

Philippe Thaler, Eric Gohet , Yann Nouvellon, Régis Lacote, Frédéric Gay and Frédéric Do

Rubber ecophysiology and future climate

What will the climate be in the main rubber producing areas?

What will be the effects of higher T° on C assimilation?

What will be the effects of higher T° on tree growth?

What will be the effects of higher T° on latex production?

Adaptation of rubber trees to water stress?

almost nothing

What will the climate be in the main rubber producing areas?

Probable Global Climate scenarios are rather well-known

- But need to be downscalled to every local NR area
- Methodologies are available
- Good forecasts in some areas
- Need to be generalized or updated

Zomer et al. 2014 https://doi.org/10.1016/j.biocon.2013.11.028

• Some knowledge at leaf scale (Kositsup et al 2010)

Trees (2009) 23:357-365 DOI 10.1007/s00468-008-0284-x

ORIGINAL PAPER

INRAO

Photosynthetic capacity and temperature responses of photosynthesis of rubber trees (*Hevea brasiliensis* Müll. Arg.) acclimate to changes in ambient temperatures

Boonthida Kositsup · Pierre Montpied · Poonpipope Kasemsap · Philippe Thaler Thierry Améglio · Erwin Dreyer

Parameter	Growth temperature (°C)	
	18	28
V _{cmax25} (μmol m ⁻² s ⁻¹)	26.1 ± 1.8^{a}	43.9 ± 2.9^{b}
$E_{\rm aV} ({\rm kJ \ mol}^{-1})$	60.8 ± 7.2^{a}	68.5 ± 6.2^{b}
$J_{\text{max}25} \text{ (umol m}^{-2} \text{ s}^{-1}\text{)}$	50.8 ± 9.9^{a}	77.4 ± 11.2^{b}
$E_{\rm aJ}$ (kJ mol ⁻¹)	39.2 ± 18.5^{a}	50.6 ± 13.5^{b}
$J_{\text{max25}}/V_{\text{cmax25}}$	1.93 ± 0.005^{a}	1.79 ± 0.004^{b}
LMA (g m ⁻²)	64.1 ± 1.4^{a}	52.1 ± 1.3^{b}
SPAD	41.6 ± 0.9^{a}	55.6 ± 0.9^{b}
N_m (%)	2.72 ± 0.05^{a}	4.08 ± 0.05^{b}
C (%)	47.4 ± 0.2^{a}	48.2 ± 0.2^{b}
$V_{\text{cmax25}}/N_{\text{a}} \; (\mu \text{mol g}^{-1} \; \text{s}^{-1})$	14.8 ± 0.3^{a}	21.2 ± 0.3^{b}
$J_{\text{max}25}/N_{\text{a}} \; (\mu \text{mol g}^{-1} \; \text{s}^{-1})$	28.9 ± 0.9^{a}	37.0 ± 0.8^{b}

We can predict photosynthetic parameters at future temperatures

But a long way to predict

whole tree C assimilation and plantation primary production (GPP)!

PS parameters x stomatal conductance x whole tree canopy x phenology....

The way forward: upscalling flux measurements

Rubber Flux Tower at Chachoengsao http://asiaflux.net

Primary Production

Evapo- transpiration

Water Use Efficiency

The way forward: modelling

Simulation of water and CO₂ fluxes at tree and plot scale

The way forward: modelling

Forest Ecology and Management 439 (2019) 55-69

Climbing the mountain fast but smart: Modelling rubber tree growth and latex yield under climate change

Xueqing Yang^{a,b,c}, Sergey Blagodatsky^{a,*}, Carsten Marohn^a, Hongxi Liu^a, Reza Golbon^a, Jianchu Xu^c, Georg Cadisch^a

- ^a Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Sautgart, Germany
- b Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunning, China
- World Agroforestry Centre (ICRAF), China & East Asia Office c.o. Kunming Institute of Botany, Kunming, China

Presented by S Blagodatsky in Session 2

Example LUCIA Model

What about growth and latex production?

Biomass will be directly linked to C assimilation but growth /yield partitioning depends on C allocation

Journal of Experimental Botany, Vol. 71, No. 6 pp. 2028–2039, 2020 doi:10.1093/jxb/erz551

RESEARCH PAPER

In situ (13CO₂) labelling of rubber trees reveals a seasonal shift in the contribution of the carbon sources involved in latex regeneration

Ornuma Duangngam^{1,2}, Dorine Desalme^{3,8,0}, Philippe Thaler^{4,5}, Poonpipope Kasemsap^{2,*}, Jate Sathornkich², Duangrat Satakhun¹, Chompunut Chayawat¹, Nicolas Angeli³, Pisamai Chantuma⁶ and Daniel Epron^{3,7}

Direct effects of higher T° on latex yield?

- Negative for latex flow?
- Day/night differences?

Greater diurnal temperature difference, an overlooked but important climatic driver of rubber yield

Yu Haiying et al. 2014. INDUSTRIAL CROPS AND PRODUCTS 62: 14-21

A key research topic will be the interactions between climate change and low tapping frequencies

Socio-economic x climate issue.

Adaptation of rubber trees to water stress?

- More knowledge from the numerous studies of adaptation to drier conditions in marginal areas, particularly in India and NE Thailand
- Recent findings show a promising clonal variability in response to water stress

"Growth and Hydraulic" (GRHYD) project: Bases of rubber clones adaptation to water constraints in immature period

Index of investment in canopy in rainy season

Adaptation of rubber trees to water stress?

- Important to untangle soil drought from atmospheric drought
- Strong regulation of transpiration with highVPD, even if water is available in soil.

Strong over-estimation of water use in many studies and models.

From Isarangkool et al 2011 (mature trees RRIM600)

Relationship between tree transpiration and reference evapotranspiration (ET0) in a well-watered period (REW > 0.5) with ET0 \leq 2.2 mm day-1 (open circle), a well-watered period when ET0 was higher than >2.2 mm day-1 (closed circle), others drought periods (REW < 0.5).

Conclusion

- Little knowledge and huge gaps
- Potential risk of adverse effects of CC on growth, survival and yield
- Intensive research efforts to be promoted

Improving the ecophysiological functions in integrative models could be a relevant cooperative project for the network.

